

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

LESSON PLAN

Course Code	Course Title	Year/Sem	Branch	Contact Hrs/Week	Section
R203102F	RENEWABLE ENERGY SOURCES	III/I	ECE	5	ECE-B

COURSE OUTCOMES:

At the end of the course students are able to :

<u>CO1</u>: Analyze solar radiation data, extra-terrestrial radiation, radiation on earth's surface and solar Energy Storage.

<u>CO2</u>: Illustrate the components of wind energy systems.

<u>CO3</u>: Illustrate the working of biomass, digesters and Geothermal plants.

<u>**CO4**</u>: Demonstrate the principle of Energy production from OTEC, Tidal and Waves.

<u>CO5</u>: Evaluate the concept and working of Fuel cells & MHD power generation.

Unit No.	Out Comes		TOPIC(S)	BOOK Referen	Total period	Delivery Method	GATE/ IES	
	UNIT-I SOLAR ENERGY							
	CO1: Analyze solar radiation data, extra- terrestrial radiation,	1.1	Introduction - Renewable Sources - prospects Solar radiation at the Earth Surface	T1, T2, R1 T1, T2, R1	12	Chalk & Talk, Active Learning &	GATE	
1	radiation on earth's surface and solar Energy Storage.	1.3	Equivalent circuit of a Photovoltaic (PV) Cell - I-V & P-V Characteristics	T1, T2, R1		Tutorial		

		1.4	S	olar Energy Collectors	T1, T2,		
		1.5		Flat	R1		
		1.5		Flat plate Collectors	T1, T2, R1		
		1.6	С	oncentrating collectors	T1, T2, R1		
		1.7		r Energy storage systems Applications: Solar Pond	T1, T2, R1		
		1.8		Solar water heating	T1, T2, R1		
		1.9		Solar Green house	T1, T2, R1		
		J	JNIT	- II WIND ENERG	Y		
		2.1	1	Introduction - basic Principles of Wind Energy Conversion	T1, T2, R2	12	
	CO2: Illustrate the	2.2	2	Basic Principles of Wind Energy Conversion	T1, T2, R2	12	Chalk & Talk,
2	components of wind energy systems.	2.3	3	The nature of Wind	T1, T2, R2		Tutorial, Active
		2.4		The power in the wind	T1, T2, R2		Learning
		2.5	5	Wind Energy Conversion	T1, T2, R2		
		2.0	5	Site selection considerations	T1, T2, R2		
		2.7	7	Basic components of Wind Energy Conversion Systems (WECS	T1, T2, R2		
		2.8	3	Classification	T1, T2, R2		
		2.9)	Applications.	T1, T2, R2		
	UNIT - III	BIOM	[ASS	AND GEOTHERMA	L AL ENEF	RGY	
	CO3: Illustrate the	3.1		Biomass: Introduction -	T1, T2		
	working of biomass,			Biomass conversion technologies		10	
3	digesters and Geothermal plants.	3.2	2	Photosynthesis, factors affecting Bio	T1, T2	12	Chalk &

			digestion			Talk
		3.3	Classification of biogas plants	T1, T2		
		3.4	Types of biogas plants -	T1, T2		
		3.5	Selection of site for a biogas plant	T1, T2		
		3.6	Geothermal Energy: Introduction, Geothermal Sources	T1, T2		
		3.7	Applications	T1, T2		
		3.8	Operational and Environmental problems.	T1, T2		
	UNIT - IV	ENERG	Y FROM OCEANS, W	1	z TIDF	2S
		4.1	Oceans: Introduction	T1, T2, R3		
		4.2	Ocean Thermal Electric Conversion (OTEC) methods	T1, T2, R3	12	
	CO4: Demonstrate the principle of	4.3	Methods - prospects of OTEC in India.	T1, T2, R3		Chalk &
4	Energy production from OTEC, Tidal and Waves.	4.4	Waves: Introduction - Energy and Power from the waves	T1, T2, R3		Talk, PPT, Tutorial
		4.5	Wave Energy conversion devices. Energy.	T1, T2, R3		
		4.5	conversion devices.Energy.Tides: Basic principle			
			conversion devices.Energy.Tides: Basic principleof Tide EnergyComponents of Tidal	R3 T1, T2, R3 T1, T2,		
	UNIT	4.6	conversion devices.Energy.Tides: Basic principleof Tide Energy	R3 T1, T2, R3 T1, T2, R3		
		4.6	conversion devices.Energy.Tides: Basic principleof Tide EnergyComponents of TidalEnergy.	R3 T1, T2, R3 T1, T2, R3		
5	UNIT · CO5: Evaluate the concept and working	4.6 4.7 - V CHE	 conversion devices. Energy. Tides: Basic principle of Tide Energy Components of Tidal Energy. MICAL ENERGY SOU 	R3 T1, T2, R3 T1, T2, R3 URCES	12	

of Fuel cells & MHD power generation.	5.4	Types of Fuel Cells - Applications.	T1, T2		Chalk & Talk, PPT	
	5.5	Hydrogen Energy: Introduction	T1, T2		Tutorial, Active	
	5.6	Methods of Hydrogen production	T1, T2		Learning & Seminars	
	5.7	Storage and Applications	T1, T2			
	5.8	Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation	T1, T2			
	5.9	Types.	T1, T2			
		TOTAL		60		

CO1	Analyze solar radiation data, extra-terrestrial radiation,	ANALYZE	K4
	radiation on earth's surface and solar		
	Energy Storage.		
CO2	Illustrate the components of wind energy systems.	UNDERSTANDING	K2
CO3	Illustrate the working of biomass, digesters and	UNDERSTANDING	K2
	Geothermal plants.		
CO4	Demonstrate the principle of Energy production from	UNDERSTANDING	K2
	OTEC, Tidal and Waves.		
CO5	Evaluate the concept and working of Fuel cells & MHD	APPLY	K3
	power generation.		

<u>CO-PO MAPPING</u>: (1: Slight [Low]; 2: Moderate [Medium]; 3: Substantial [High]; '-': No Correlation)

					0011	Juniony					-	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1-K4	3	-	3	-	2	2	2	-	3	-	3	3
CO2-K4	3	-	3	-	2	2	2	-	3	-	3	3
CO3-K4,K5	3	2	3	2	2	2	2	-	3	-	3	3
CO4-K5	3	-	3	-	2	2	2	-	3	-	3	3
CO5-K5	3	-	3	-	2	2	2	-	3	-	3	3

S.NO	GRADUATE ATTRIBUTION	ACTION VERBS	LEVEL
1	ENGINEERING KNOWLEDGE	APPLY	K3
2	PROBLEM ANALYSIS	ANALYZE	K4
3	DESIGN DEVELOPMENT OF SOLUTIONS	UNDERSTANDING	K2
4	INVESTIGATION OF COMPLEX PROBLEMS	APPLY	К3
5	MODERN TOOL USAGE	APPLY	K3
6	ENGINEER AND SOCIETY	APPLY	K3
7	ENVIRONMENT AND SUSTAINABILITY	ANALYZE	K4
8	ETHICS		
9	INDIVIDUALS AND TEAM WORK	APPLY	K3
10	COMMUNICATION		
11	PROJECT MANAGEMENT AND FINANCE	APPLY	K3
12	LIFE LONG LEARNING	APPLY	K3

Text Books:	
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION
1.	G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011.
2.	John Twidell & Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013
Reference Book	<s:< th=""></s:<>
S.No.	AUTHORS, BOOK TITLE, EDITION, PUBLISHER, YEAR OF PUBLICATION
1.	S.P.Sukhatme & J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage, TMH 2011.
2.	John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts, Oxford, 2 nd edition, 2013.
3.	Shoba Nath Singh, Non- Conventional Energy Resources, Pearson Publications, 2015.

		Name	Signature with Date
i.	Faculty	Mrs. B Rohini	
ii.	Class Coordinator	Mrs. B Lalitha	

PRINCIPAL

HOD